ÐÂÖÊÁÏϸ·ÖÁìÓòµÄÁì¾üÆóÒµ
ÖÐÎÄ¡¡£ü¡¡EN

¿ìÓ¯VIII¹ÙÍø-¡¶¿ÆÑ§¡·£¨20251016³öÊ飩һÖÜÂÛÎĵ¼¶Á¡ªÐÂÎÅ¡ª¿ÆÑ§Íø

Ðû²¼Ê±¼ä£º2025-10-28 19:05:25
ä¯ÀÀ´ÎÊý£º´Î

Science, 16 Oct 2025, VOL 390, ISSUE 6770

¡¶¿ÆÑ§¡·2025Äê10ÔÂ16ÈÕ£¬µÚ390¾í£¬6770ÆÚ

ÖÊÁÏ¿ÆÑ§Material Sciences

Electrically controlled interlayer trion fluid in electron-hole bilayers

µç×Ó¡ª¿ÕѨ˫²ã½á¹¹ÖÐµÄµç¿Ø²ã¼äÈý×ÓÁ÷Ìå

¡ø ×÷ÕߣºRuishi Qi, Qize Li et al.

¡øÁ´½Ó£º

https://www.science.org/doi/10.1126/science.adn4584

¡øÔñÒª£ºÓÚÁ¿×Óµç×Ó¡ª¿ÕѨ£¨e-h£©Á÷ÌåÖеÄÅųâÐÔÓëÎüÒýÐÔ¿âÂØÏ໥×÷ÓÃÅäÏàÖúÓ㬿ÉÔÐÓý·¢Éú¶àÁ£×ÓµçºÉ¸´ºÏÌåµÄÏà¸ÉÏà̬£¬È缤×Ó¡¢Èý×Ó¼°Ë«¼¤×Ó¡£Ñо¿Õß±¨µ¼ÁËÓÚ·¶µÂÍß¶û˹ÒìÖʽáÖÐʵÏÖµç¿Ø²ã¼äÈý×ÓÁ÷ÌåµÄÊÔÑé½á¹û¡£ÓÚÇ¿ñîºÏµç×Ó¡ª¿ÕѨ˫²ã½á¹¹ÖУ¬µç×ÓÓë¿ÕѨ×Ô¾õÐγÉÈýÁ£×ÓÈý×ÓÊø¶ò¾Ö´Ù̬¡£²ã¼äÈý×Ó¿É·ºÆð1e-2hÓë2e-1hÁ½ÖÖ¹¹ÐÍ¡£

Ñо¿·¢ÏÖ£¬1e-2hÈý×ÓÖеÄÁ½¸ö¿ÕѨ»áÐγÉ×ÔÐýµ¥ÖØÌ¬£¬Æä×ÔÐýÄÜ϶ԼΪ1ºÁµç×Ó·üÌØ¡£¾­ÓÉÀú³Ì¾²µçդѹµ÷¿Ø£¬¸Ã¾ùºâ̬¿ÉÁ¬Ðø¸Ä±äΪ¼¤×ÓÁ÷Ìå¡¢Èý×ÓÁ÷Ìå¡¢¼¤×Ó¡ªÈý×Ó»ìÏý̬»òÕßÈý×Ó¡ªµçºÉ»ìÏý̬¡£ÕâÏîÑо¿ÎªÏàʶ¿Éµ÷г²£É«¡ª·ÑÃ×»ìÏýÌåµÄÏà¸ÉÏà̬ÌṩÁËÐÂÆ½Ì¨¡£

¡ø Abstract£ºThe combination of repulsive and attractive Coulomb interactions in a quantum electron-hole (e-h) fluid can produce correlated phases of multiparticle charge complexes, such as excitons, trions, and biexcitons. We report an experimental realization of an electrically controlled interlayer trion fluid in van der Waals heterostructures. In strongly coupled e-h bilayers, electrons and holes spontaneously form three-particle trion bound states. The interlayer trions can assume 1e-2h and 2e-1h configurations. We show that the two holes in 1e-2h trions form a spin-singlet with a spin gap of approximately one milli¨Celectron volt. By electrostatic gating, the equilibrium state can be continuously tuned into an exciton fluid, a trion fluid, an exciton-trion mixture, or a trion-charge mixture. Our work demonstrates a platform to study correlated phases of tunable Bose-Fermi mixtures.

ÉúÎïѧBiology

¡°Kiss-shrink-run¡± unifies mechanisms for synaptic vesicle exocytosis and hyperfast recycling

¡°Ç×Íê¾ÍÅÜ¡± ͬһÁËÍ»´¥Ð¡ÅݰûÍÂÓ볬¿ìËÙÂֻصĻúÖÆ

¡ø ×÷ÕߣºChang-Lu Tao, Chong-Li Tian et al.

¡øÁ´½Ó£º

https://www.science.org/doi/10.1126/science.ads7954

¡ø ÔñÒª£ºÍ»´¥Ð¡ÅÝ£¨SV£©°ûÍÂ×÷ÓÃÊÇÉñ¾­ÔªÍ¨Ñ¶µÄ»ù´¡£¬µ«ÒòΪԭλ²»ÑŲâ¿ìËÙ¶¯Ì¬Àú³ÌµÄ¼¼ÊõÏÞ¶¨£¬ÆäÄÉÃ׳߶ȶ¯Á¦Ñ§»úÖÆ»¹Ã»ÓÐÁËÁË¡£Ñо¿Õß¾­ÓÉÀú³Ì¹âÒÅ´«Ñ§ñîºÏµÄʱ¼ä·Ö±çÀä¶³µç×ӶϲãɨÃè¼¼Êõ£¬Àֳɲ¶×½ÁËÄêÒ¹Êóº£ÂíÇøÍ»´¥ÖÐСÅݵİûÍÂÀú³Ì¡£

ÓÚÍ»´¥¼¤»îºóµÄ4ºÁÃëÄÚ£¬Í»´¥Ð¡ÅÝ»á¶ÌÔÝ¡°Ç×ÎÇ¡±´¥ÖÊĤ£¬ÐγÉÒ»¸öÔ¼4ÄÉÃ׿íµÄÖ¬ÖÊÈÚ»á¿×£¬ÆäË«²à¿É¼ûÒÉËÆ¿ÉÈÜÐÔNSF¸½×ÅÂѰ×ÊÜÌå£»ËæºóСÅÝѸËÙ¡°½ôËõ¡±ÖÁÔ­Íâò»ýµÄÒ»°ë°Ú²¼¡£ÖÁ70ºÁÃëʱ£¬¶àÊý½ôËõºóµÄСÅݾ­ÓÉÀú³Ì¡°ÌÓÒÝ¡±Â·×ÓÍê³ÉÂֻأ¬ÆäÓàСÅÝÔòÓëÍ»´¥Ç°Ä¤Èڻᡣ100ºÁÃëºó£¬³¬¿ìÄÚÍÌ×÷ÓûáÊÕÊܽӹÜÀ©ÕŵÄÍ»´¥Ç°Ä¤¡£

ÕâЩ·¢ÏÖÕ¹ÏÖÁËÍ»´¥Ð¡ÅݰûÍÂÓ볬¿ìËÙÂֻصġ°Ç×Íê¾ÍÅÜ¡±»úÖÆ£¬ºÍгÁËÏÖÓÐÀíÂÛÄ£×ӵĵÖêõ£¬²¢²ûÁËȻͻ´¥Í¨±¨µÄ¸ßЧÐÔÓë±£Õæ¶È»ù´¡¡£

¡ø Abstract£ºSynaptic vesicle (SV) exocytosis underpins neuronal coÃÃÃÃunication, yet its nanoscale dynamics remain poorly understood owing to limitations in visualizing rapid events in situ. Here, we used optogenetics-coupled, time-resolved cryo¨Celectron tomography to capture SV exocytosis in rat hippocampal synapses. Within 4 milliseconds of synaptic activation, SVs transiently ¡°kiss¡± the plasma membrane, forming a ~4-nanometer lipidic fusion pore flanked by putative soluble NSF-attachment protein receptor (SNARE) complexes and then rapidly ¡°shrink¡± to approximately half of their original surface area. By 70 milliseconds, most shrunken SVs recycle via a ¡°run-away¡± pathway, whereas others collapse into the presynaptic membrane. Ultrafast endocytosis retrieves the expanded presynaptic membrane after 100 milliseconds. These findings reveal a ¡°kiss-shrink-run¡± mechanism of SV exocytosis and hyperfast recycling, reconciling conflicting models and elucidating the efficiency and fidelity of synaptic transmission.

Defensive fungal symbiosis on insect hindlegs

³æõôºóÍÈÉϵÄÔ¤·ÀÐÔÕæ¾ú¹²ÉúÕ÷Ïó

¡ø ×÷ÕߣºTakanori Nishino, Minoru Moriyama et al.

¡øÁ´½Ó£º

https://www.science.org/doi/10.1126/science.adp6699

¡ø ÔñÒª£º¶µòí¿Æ³ô³æ£¨Dinidorid stinkbug£©µÄ´ÆÐÔºóÍÈÉϾ߱¸Ò»¸öÏÔÖøµÄ¹ÄĤÆ÷¹Ù¡£±¾Ñо¿×¢½â£¬¸ÃÆ÷¹Ù²¢²»ÊÇÓÃÔÚ¸ÐÖªÉùÒô£¬¶øÊÇÌØ»¯ÎªÖü´æÎ¢ÉúÎï¹²ÉúÌå¡£ÆäÍâò²¢²»ÊÇĤÖʽṹ£¬¶øÊÇÓɶà¿×½ÇÖʲã×é³É£¬Ã¿Ò»¸ö¿×¶´¾ùÓëÏÙÌåÅÅйϸ°ûÏàÁ¬¡£

ÓÚæÜÉúÆÚµÄ´ÆÐÔ¸öÌåÖУ¬ºóÍÈÆ÷¹ÙÍâòÁýÕÖ×Å´Ó¿×¶´ÖÐÉú³¤³öµÄÕæ¾ú¾úË¿¡£²úÂÑʱ£¬´ÆÐÔ»á½«Õæ¾ú´Ó¸ÃÆ÷¹Ù×ªÒÆÖÁÂÑÁ£Íâò£¬¾úË¿¾­ÓÉÀú³ÌÎïÀí·®Àé×÷ÓÃÑÚ»¤³æÂÑÃâÊÜ·äÀà¼ÄÉú¡£ÕâÐ©Õæ¾úÖØÒªÓɶàÖÖµÍÖ²¡ÐÔ³æ²Ý¿ÆÎïÖÖ×é³É£¬¾ß±¸¸»ºñµÄ¶àÑùÐÔ¡£

¡ø Abstract£ºDinidorid stinkbugs were reported to possess a conspicuous tympanal organ on female hindlegs. In this study, we show that this organ is specialized to retain microbial symbionts rather than to perceive sound. The organ¡¯s surface is not membranous but consists of porous cuticle in which each pore connects to glandular secretory cells. In reproductive females, the hindleg organ is covered with fungal hyphae that grow from the pores. Upon oviposition, the females transfer the fung¿ìÓ¯VIII¹ÙÍø-i from the organ to the eggs, where the hyphae physically protect the eggs against wasp parasitism. The fungi comprise a diversity of mostly low-pathogenicity Cordycipitaceae.

¶¯ÎïѧZoology

Head-direction cells as a neural compass in bats navigating outdoors on a remote oceanic island

Í·²¿±êµÄÄ¿µÄϸ°ûÓÚÆ«Ô¶º£µºÉÏ»§Íâµ¼º½µÄòùòðÖÐÆðµ½Éñ¾­ÂÞÅ̵Ä×÷ÓÃ

¡ø ×÷ÕߣºShaked Palgi, Saikat Ray et al.

¡øÁ´½Ó£º

https://www.science.org/doi/10.1126/science.adw6202

¡øÔñÒª£º¶¯Îï¼°ÈËÀàÒÀ¿¿µ¼º½ÄÜÁ¦»¼ÉÏÒÔÉú´æ¡£È»¶ø£¬ÄêÒ¹ÄÔ¡°µ¼º½»ØÂ·¡±ÖеĿռäÉñ¾­Ôª´Ëǰ´ÓδÓÚÕæÊµÇé¿öǰÌáϱ»Ñо¿¹ý¡£Ñо¿ÕßÓÚÒ°Íâ¶ÔÓÚ¿Õ¼äÉñ¾­Ôª¿ªÕ¹Á˵çÐÄÀíÑо¿¡£ËûÃǼͼÁËÓÚÆ«Ô¶º£µºÉÏËÁÒ⺽ÐеÄòùòðµÄº£ÂíÌåÖÐÍ·²¿±êµÄÄ¿µÄϸ°ûµÄÔ˶¯¡£

ÕâЩÉñ¾­ÔªÓÚµºÓìÈ«Óò¹æÄ£ÄÚ¾ùÄÜÎȶ¨±íÕ÷òùòðµÄ³¯Ïò¶¨Î»£¬ÇÒ²»ÊÜÔÂÇòÓëÐǺӶ¯Ì¬±ä»¯µÄÓ°Ïì¡£´ÓÊ×´ÎÃþË÷¸ÃµºÓì×îÏÈ£¬±êµÄÄ¿µÄµ÷Ð³ÌØÕ÷µßÄ©Êý¸öÒ¹ÍíÖð½¥Ç÷ÔÚÎȶ¨¡£

ÕâЩ½á¹û×¢½â£¬Í·²¿±êµÄÄ¿µÄϸ°û¿ÉÒÔ»òÐí×÷ΪµßÄ©½øÐÞÐγɵĿ¿µÃסÉñ¾­ÂÞÅÌ£¬ÎªÕæÊµÇé¿öÖеĵ¼º½·þÎñ¡ª¡ªÕÃÏÔÁ˽«Éñ¾­¿ÆÑ§Ñо¿ÍÆÏòÒ°ÍâÇé¿öµÄÖ÷Òª¼ÛÖµ¡£

¡ø Abstract£ºAnimals and humans rely on their navigation skills to survive. However, spatial neurons in the brain¡¯s ¡°navigation circuit¡± had not previously been studied under real-world conditions. We conducted an electrophysiological study of spatial neurons in the wild: We recorded head-direction cells from the presubiculum of bats flying unconstrained and navigating outdoors on a remote oceanic island. These neurons represented the bats¡¯ orientation stably across the island¡¯s entire geographical scale and irrespective of the dynamics of the Moon and the Milky Way. The directional tuning stabilized over several nights from the first exploration of the island. These results imply that head-direction cells can serve as a learned, reliable neural compass for real-world navigation¡ªhighlighting the power of taking neuroscience out into the wild.

µØÇò¿ÆÑ§Earth Science

Global mean sea level over the past 4.5 million years

È«ÊÀ½çƽ¾ùº£Æ½ÃæÓÚÒÑÍù450ÍòÄê¼äµÄ±ä»¯

¡ø ×÷ÕߣºPeter U. Clark, Jeremy D. Shakun et al.

¡øÁ´½Ó£º

https://www.science.org/doi/10.1126/science.adv8389

¡ø ÔñÒª£ºÍíÐÂÉú´úÈ«ÊÀ½çƽ¾ùº£Æ½Ã棨GMSL£©µÄ±ä»¯ÈÔ²»È·¶¨¡£Ñо¿ÕßʹÓöÔÓÚº£Ë®Ñõ¡ª18Í¬Î»ËØ±ä»¯µÄÖØÐÞ£¬ÖØÐÞÁË×Ô450ÍòÄêǰÒÔÀ´µÄÈ«ÊÀ½çƽ¾ùº£Æ½ÃæÇé¿ö¡£ÕâÒ»ÖØÐÞ˼Á¿ÁËζÈÇý¶¯µÄÈ«ÊÀ½ç±ù¸ÇÑõ¡ª18Í¬Î»ËØµÄ±ä»¯¡£ÓÚ450ÍòÄêÖÁ300ÍòÄêǰʱÆÚ£¬º£Æ½Ãæ¸ßλÆÚÈÔ±ÈÏÖÔÚ³¬³ö¿çÔ½ÖÁ¶à20 Ã×£¬¶ø³õ´ÎµÍÔÚÏÖÔڵĺ£Æ½ÃæµÍλÆÚ×¢½â±±°ëÇò±ù´¨×÷ÓÃʼÔÚ400ÍòÄêǰ¡£

È«ÊÀ½ç±ù´¨×÷ÓõļÓÖØ·¢ÉúÓÚ300ÍòÄêÖÁ250ÍòÄêǰ£¬Æäµß·åÆÚ¼äµÄµÍº£Æ½ÃæÎ»Óë21000Äêǰĩ´ÎÊ¢±ùÆÚµÄµÍº£Æ½ÃæÎ»ÏàËÆ£¬²¢ÓÚÕû¸ö¸üÐÂÊÀµÄÄêÒ¹²¿ÃÅʱ¼äÀïÖØ¸´·ºÆð¡£ÔÛÃǽ«±ù¸Ç±äÒìÐÔµÄÖиüÐÂÊÀתÐÍÆÚ¹éÒòÔÚÔ¼10ÍòÄêÖÜÆÚµÄ¶þÑõ»¯Ì¼±äÂÊÔö³¤¶ÔÓÚ4.1ÍòÄêÖÜÆÚбÂÊÇ¿ÖÆµÄµ÷ÖÆ×÷Óá£

¡ø Abstract£ºChanges in global mean sea level (GMSL) during the late Cenozoic remain uncertain. We use a reconstruction of changes in ¦Ä18O of seawater to reconstruct GMSL since 4.5 million years ago (Ma) that accounts for temperature-driven changes in the ¦Ä18O of global ice sheets. Between 4.5 and 3 Ma, sea level highstands remained up to 20 m above present whereas the first lowstands below present suggest onset of Northern Hemisphere glaciation at 4 Ma. Intensification of global glaciation occurred from 3 Ma to 2.5 Ma, culminating in lowstands similar to the Last Glacial Maximum lowstand at 21,000 years ago and that reoccurred throughout much of the Pleistocene. We attribute the middle Pleistocene transition in ice sheet variability (1.2 Ma to 0.62 Ma) to modulation of 41-thousand-year (kyr) obliquity forcing by an increase in ~100-kyr CO2variability.

Drought intensity and duration interact to magnify losses in primary productivityt

¸ÉºµÇ¿¶ÈÓëÁ¬ÐøÊ±¼äÅäÏàÖúÓûá·ÅÄêÒ¹µÍ¼¶Éú²úÁ¦É¥Ê§

¡ø ×÷ÕߣºTimothy Ohlert, Melinda D. Smith et al.

¡øÁ´½Ó£º

https://www.science.org/doi/10.1126/science.ads8144

¡øÔñÒª£ºËæ×ŸɺµÆÚÑÓÉìÇÒ¼ÓÖØ£¬Æä¶ÔÓÚ½µØµÍ¼¶Éú²úÁ¦µÄÓ°Ï콫ÂýÂýÀ©Õ¹¡£È»¶ø£¬²¿ÃÅÉú̬ÌåÏµËÆºõÄÜ˳Ӧ¶àÄê¸Éºµ£¬ÓڸɺµÁ¬ÐøÊ±ÆÚÉú²úÁ¦½µÂä·ù¶ÈÁ¬½áÎȶ¨»òÕßÖð½¥ÊÕÕ­¡£

Ñо¿Õß¾­ÓÉÀú³ÌÈ«ÊÀ½ç74´¦²ÝÔ­Óë¹à´ÔµØµÄ²»ÑŲâÊý¾Ý£¬Á¿»¯Á˸ɺµÁ¬ÐøÊ±¼äÓëÇ¿¶È¶ÔÓÚµØÉÏÉú²úÁ¦µÄ¸´ºÏÓ°Ïì¡£³ýÁ˼«¶Ë¸ÉºµÊÂÎñÍ⣬ÕâЩÉú̬ÌåϵÕûÌåÉÏÌåÏÖ³ö¶ÔÓÚ¶àÄê¸ÉºµµÄ˳ӦÄÜÁ¦¡£µ±ÔâÊÜÁ¬ÐøËÄÄêµÄ¼«¶Ë¸ÉºµÊ±£¬Éú̬ÌåϵÉú²úÁ¦É¥Ê§½ÏÊ×ÄêÔö³¤Ô¼2.5±¶¡£

ÕâЩ½á¹û×¢½â£ºÈô¸ÉºµÁ¬ÐøÊ±¼äÓëÇ¿¶ÈÁ¬ÐøÔö³¤£¬Éú̬Ìåϵ¾Ù¶¯½«·¢Éú¸ù¸öÐԸı䡪¡ª´Ó³Ö¾Ãά³ÖµÍˮƽ¹¦Ð§×´¿ö£¬×ªÏòÓÚ¼«¶Ë¸ÉºµÊ±·ºÆðÁ¬ÐøÇÒÑϾþµÄÉú²úÁ¦É¥Ê§¡£

¡ø Abstract£ºAs droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ¡Ü1-in-100-year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme.

ÓÈÆäÉùÃ÷£º±¾ÎÄ×ªÔØ½ö½öÊdzöÔÚÁ÷´«ÐÅÏ¢µÄÐèÒª£¬Æäʵ²»ÏóÕ÷×Å´ú±í±¾ÍøÕ¾²»Ñŵã»òÕßÖ¤Ã÷ÆäÄÚÈݵÄÕæÊµÐÔ£»ÈçÆäËûýÌå¡¢ÍøÕ¾»òÕßСÎÒ˽¼Ò´Ó±¾ÍøÕ¾×ªÔØÀûÓã¬Ðë±£Áô±¾ÍøÕ¾×¢Ã÷µÄ¡°À´Àú¡±£¬²¢×Ô´ó°æÈ¨µÈÖ´·¨ÔðÈΣ»×÷ÕßÈç¹û²»¹âÔ¸±»×ªÔØ»òÕßÕß½ÓÇ¢×ªÔØ¸å·ÑµÈÊÂÒË£¬ÇëÓëÔÛÃÇÁªÏµ¡£-¿ìÓ¯VIII¹ÙÍø-