ÐÂÖÊÁÏϸ·ÖÁìÓòµÄÁì¾üÆóÒµ
ÖÐÎÄ¡¡£ü¡¡EN

¿ìÓ¯VIII¹ÙÍø-¡¶×ÔÈ»¡·£¨20251016³öÊ飩һÖÜÂÛÎĵ¼¶Á¡ªÐÂÎÅ¡ª¿ÆÑ§Íø

Ðû²¼Ê±¼ä£º2025-11-03 12:33:27
ä¯ÀÀ´ÎÊý£º´Î

±àÒë | ·ëάά

Nature, 16 October 2025, Volume 646 Issue 8085

¡¶ÌìÈ»¡·2025Äê10ÔÂ16ÈÕ£¬µÚ646¾í£¬8085ÆÚ

¸ßЧÁ¿×ÓÈÈÄ£·Â

¡ø ×÷ÕߣºHChi-Fang Chen, Michael Kastoryano, Fernando G. S. L. Brand?o Andr¨¢s Gily¨¦n

¡øÁ´½Ó£º

https://www.nature.com/articles/s41586-025-09583-x

¡ø ÔñÒª£ºÁ¿×ÓÅÌËã»úÓÐÍû½â¾ö¾­µäÅÌËã»úÄÑÒÔ´¦Öô¦·£µÄÁ¿×ÓÄ£·ÂÎÊÌâ¡£Ö»¹Ü½ñ³¯ÒѾ­¿ª·¢³ö¶àÖÖÓÃÔÚÄ£·ÂÁ¿×Ó¶¯Á¦Ñ§µÄÁ¿×ÓËã·¨£¬µ«ÊÊÓÃÔÚÄ£·ÂµÍÎÂÁ¿×ÓÕ÷ÏóµÄͨÓÃÒªÁìÈÔÊô¿Õȱ¡£ÓÚ¾­µäÅÌËãÁìÓò£¬´ÓÈÈÂþÑÜÖвÉÑùµÄ½üËÆÊ¹ÃüÒѾ­ÖØÒª¾­ÓÉÀú³ÌÂí¶û¿É·òÁ´ÃÉÌØ¿¨Â壨MCMC£©ÒªÁì»ñµÃ½â¾ö¡£

Ñо¿ÕßÌá³öÁËÒ»ÖÖ¸ßЧµÄÁ¿×ÓÈÈÄ£·ÂËã·¨¡ª¡ª¸ÃËã·¨½üËÆMCMCÒªÁ죬¾ß±¸¹ýϸ¾ùºâÌØÕ÷£¬×ñÕÕ¾ÖÓòÐÔÔ­Àí£¬¿É×÷Ϊ¿ª·ÅÁ¿×ÓÌåϵÖÐÈÈ»¯Àú³ÌµÄÀíÏëÄ£×Ó¡£MCMCÒªÁìµÄºã¾ÃÓ°ÏìÁ¦Ô¤Ê¾×ÅÔÛÃÇÌá³öµÄмܹ¹½«ÓÚÁ¿×ÓÅÌËãºÍÆäÓÚÎïÀí¿ÆÑ§µÈÁìÓòµÄÔËÓÃÖвûÑï»®Ò»Ö÷ÒªµÄ×÷Óá£

¡ø Abstract£ºQuantum computers promise to tackle quantum simulation problems that are classically intractable. Although a lot of quantum algorithms have been developed for simulating quantum dynamics, a general-purpose method for simulating low-temperature quantum phenomena remains unknown. In classical settings, the analogous task of sampling from thermal distributions has been largely ¿ìÓ¯VIII¹ÙÍø-addressed by Markov Chain Monte Carlo (MCMC) methods. Here we propose an efficient quantum algorithm for thermal simulation that¡ªakin to MCMC methods¡ªexhibits detailed balance, respects locality and serves as a toy model for thermalization in open quantum systems. The enduring impact of MCMC methods suggests that our new construction may play an equally important part in quantum computing and applications in the physical sciences and beyond.

In-plane dielectric constant and conductivity of confined water

ÊÜÏÞË®µÄÃæÄÚ½éµç³£ÊýÓëµ¼µçÐÔ

¡ø ×÷ÕߣºR. Wang, M. Souilamas, A. Esfandiar, R. Fabregas, S. Benaglia, H. Nevison-Andrews, Q. Yang, J. Normansell, P. Ares, G. Ferrari, A. Principi, A. K. Geim L. Fumagalli

¡øÁ´½Ó£º

https://www.nature.com/articles/s41586-025-09558-y

¡øÔñÒª£ºË®ÊǵØÇòÉÏÏÕЩËùÓÐÉúÃüÔ˶¯²»³É»òÕßȱµÄÎï×Ê£¬ÆäÐÔ×ÓÒѾ­±»ÉîÇÐÑо¿¡£È»¶ø¶ÔÓÚÔÚ½çÃæË®¼°Ç¿ÊÜÏÞË®µÄµçÑ§ÌØÕ÷ÈËÃÇÈÔÖªÖ®ÉõÉÙ¡ª¡ªÕâÖÖË®µÄ·Ý×ӽṹ»áÆ«ÀëÌåÏàË®£¬ÐγɽÏ×ŵķֲãÌØÐÔ¡£

ÕâÀà½á¹¹±ä»¯Ô¤¼Æ½«Ó°ÏìË®µÄµ¼µçÐÔ£¬Ìرð»áת±äÆä¼«»¯ÂÊ£¬½ø¶øµ÷¿ØÓںƷ±ÎïÀí»¯Ñ§Àú³ÌÖÐÆðÒªº¦×÷ÓõķÝ×Ó¼ä×÷ʹ¾¢¡£±¾Ñо¿½ÓÄÉɨÃè½éµçÏÔ΢¼¼Êõ£¬Ì½²âÁËÓÚ¼ä¾àСÖÁ1ÄÉÃ×µÄÔ­×Ó¼¶Æ½ÕûÍâò¼äÊÜÏÞË®µÄÃæÄÚµçѧÐÔ×Ó¡£

µ±ÊÜÏ޳߶ȿçÔ½ÊýÄÉÃ×ʱ£¬Ë®ÃæÄÚ½éµç³£Êý¿¿½üÌåÏàË®£¬ÖÊ×ӵ絼ÂÊÏÔÖøÔöÇ¿£¬ÇÒËæË®²ãºñ¶È¼õСÁ¬ÐøÉÏÉý¡£µ«µ±ÊÜÏÞË®½öÊ£Êý¸ö·Ý×Ó²ãºñ¶Èʱ£¬¸ÃÇ÷Ïò·¢ÉúÍ»±ä£ºÆäÃæÄÚ½éµç³£Êýµ½´ïÔ¼1000µÄÌúµçÌå¼¶¸ßÖµ£¬µçµ¼ÂÊÔòÓÚÊýSm-1´¦µ½´ï·åÖµ£¬¿¿½ü³¬Àë×ÓÒºÌåµÄÌØÐÔÖµ¡£

Ñо¿Õß½«ÕâÀàÔöǿЧӦ¹éÒòÔÚÉÙ·Ý×Ó²ãÊÜÏÞÒýÓÕµÄÇ¿ÁÒÇâ¼üÎÞÐò»¯£¬ÕâÀàÎÞÐò»¯¼È´Ù³ÉÁË·Ý×Óż¼«×ÓµÄÃæÄÚ¼«»¯£¬Ò²¼ÓËÙÁËÖÊ×Ó½»Á÷Àú³Ì¡£¶ÔÓÚÄÉÃ×ÊÜÏÞË®µçÑ§ÌØÕ÷µÄÕâÒ»Éî¿ÌÊìϤ£¬¶ÔÓÚÔÚÀí½âË®½çÃæ¼°ÄÉÃ׿׵ÀÖз¢ÉúµÄÖî¶àÕ÷Ïó¾ß±¸Ö÷ÒªÒâÒå¡£

¡ø Abstract£ºWater is essential for almost every aspect of life on our planet and, unsurprisingly, its properties have been studied in great detail. However, disproportionately little remains known about the electrical properties of interfacial and strongly confined water, in which the structure deviates from that of bulk water, becoming distinctly layered. The structural change is expected to affect the conductivity of water and particularly its polarizability, which in turn modifies intermolecular forces that play a crucial role in many physical and chemical processes. Here we use scanning dielectric microscopy (SDM)10 to probe the in-plane electrical properties of water confined between atomically flat surfaces separated by distances down to 1 nm. For confinement exceeding several nanometres, water exhibits an in-plane dielectric constant close to that of bulk water and its proton conductivity is notably enhanced, gradually increasing with decreasing water thickness. This trend abruptly changes when the confined water becomes only a few molecules thick. Its in-plane dielectric constant reaches large, ferroelectric-like values of about 1,000, whereas the conductivity peaks at several Sm-1, close to values characteristic of superionic liquids. We attribute the enhancement to strongly disordered hydrogen bonding induced by the few-layer confinement, which facilitates both easier in-plane polarization of molecular dipoles and faster proton exchange. This insight into the electrical properties of nanoconfined water is important for understanding many phenomena that occur at aqueous interfaces and in nanoscale pores.

Long-distance remote epitaxy

Ô¶¼ä¸ôÔ¶³ÌÍâÑÓ

¡ø ×÷ÕߣºRu Jia, Yan Xin, Mark Potter, Jie Jiang, Zixu Wang, Hanxue Ma, Zhihao Zhang, Zhizhuo Liang, Lifu Zhang, Zonghuan Lu, Ruizhe Yang, Saloni Pendse, Yang Hu, Kai Peng, Yilin Meng, Wei Bao, Jun Liu, Gwo-Ching Wang, Toh-Ming Lu, Yunfeng Shi, Hanwei Gao Jian Shi

¡øÁ´½Ó£º

https://www.nature.com/articles/s41586-025-09484-z

¡øÔñÒª£ºÔ¶³ÌÍâÑÓ¾­ÓÉÀú³ÌÔ¶³ÌÏ໥×÷ÓÃÓÚ±¡Ä¤Óë³Äµ×Ö®¼ä½¨ÉèÍâÑӹϸð£¬Ê¹»¼ÉϸßÖÊÁ¿µ¥¾§ÍâÑÓ²ã¿ÉÒÔ»òÐí±»×ªÒÆ²¢ÓëÆäËûÒªº¦¼¼Êõ³Äµ×¼¯³É¡£Ñ§½ç¹ã·ºÈÏΪ£¬ÓÚÔ¶³ÌÍâÑÓÀú³ÌÖУ¬ÒòΪԭ×Ó¼¶µßô¤µÄµçÊÆÓÚ¼¸¸öÔ­×Ó¼ä¸ôºó±ã»áѸËÙË¥¼õÖÁ¿Éç¢Â©µÄÊýÖµ£¬Ô¶³ÌÏ໥×÷ÓÃÓÚÍâÑÓÀú³ÌÖÐÆðÖ÷µ¼×÷ÓõÄÓÐÓüä¸ôӦСÔÚ1ÄÉÃס£

Ñо¿Õß³õ´ÎʵÏÖÁË2-7ÄÉÃ×ÄêÒ¹¼ä¾àǰÌáϵÄÔ¶³ÌÍâÑÓ¡£ËûÃǾ­ÓÉÀú³ÌÊÔÑéÑÝʾÁËCsPbBr3±¡Ä¤ÓÚNaCl³Äµ×¡¢KCl±¡Ä¤ÓÚKCl³Äµ×ÒÔºÍZnO΢Ã×°ôÓÚGaN³Äµ×ÉϵÄÔ¶¼ä¸ôÔ¶³ÌÍâÑÓ£¬·¢ÏÖÿһ¸öÔ¶³ÌÍâÑÓµÄZnO΢Ã×°ôÏ·½¾ù´æÓÚGaN³Äµ×µÄλ´í¡£

ÕâЩ·¢ÏÖ×¢½â£¬¾­ÓÉÀú³ÌʹÓÃȱÏݽ鵼µÄÔ¶¼ä¸ôÔ¶³ÌÏ໥×÷Ó㬿ÉÒÔ¶ÔÓÚÔ¶³ÌÍâÑÓ¾ÙÐж¨ÏòÉè¼ÆÓ빤³Ì»¯µ÷¿Ø¡£

¡ø Abstract£ºRemote epitaxy, in which an epitaxial relation is established between a film and a substrate through remote interactions, enables the development of high-quality single crystalline epilayers and their transfer to and integration with other technologically crucial substates. It is coÃÃÃÃonly believed that in remote epitaxy, the distance within which the remote interaction can play a leading part in the epitaxial process is less than 1 nm, as the atomically resolved fluctuating electric potential decays very rapidly to a negligible value after a few atomic distances. Here we show that it is possible to achieve remote epitaxy when the epilayer¨Csubstrate distance is as large as 2¨C7 nm. We experimentally demonstrate long-distance remote epitaxy of CsPbBr3 film on an NaCl substrate, KCl film on a KCl substrate and ZnO microrods on GaN, and show that a dislocation in the GaN substrate exists iÃÃÃÃediately below every remotely epitaxial ZnO microrod. These findings indicate that remote epitaxy could be designed and engineered by means of harnessing defect-mediated long-distance remote interactions.

Integrated lithium niobate photonics for sub-?ngstr?m snapshot spectroscopy

ʵÏÖÑǰ£¼¶Ë²ÉعâÆ×ÕÉÁ¿µÄ¼¯³ÉîêËá﮹â×ÓÆ½Ì¨

¡ø ×÷ÕߣºZhiyang Yao, Shuyang Liu, Yingce Wang, Xiaoyun Yuan Lu Fang

¡øÁ´½Ó£º

https://www.nature.com/articles/s41586-025-09591-x

¡ø ÔñÒª£º¹âÆ×ѧ×÷ΪÅжÏÎï×ʽṹÓ뻯ѧÉí·ÖµÄÒªº¦¼¼Êõ£¬ÒѾ­¹ã·ºÔËÓÃÔںƷ±¿ÆÑ§ÁìÓò¡£´«Í³¹âÆ×¼¼ÊõÊÜÏÞÔÚÕ­·ì»òÕß¹âÕ¤½á¹¹£¬±ØÐëÓÚ¹âÆ×·Ö±çÂÊÓë¹âѧ͸ÉäÂÊÖ®¼ä¾ÙÐÐȨºâ£¬ÓÚÊÇû·¨Í¬Ê±ÊµÏÖ¸ßÃô½Ý¶ÈÓë¸ßЧÂÊÕÉÁ¿¡£Ñо¿ÕßÌá×ÅÃûΪRAFAELµÄÑǰ£¼¶³¬¸ßͨÁ¿Ë²ÉعâÆ×¼¼Êõ£¬¸Ã¼¼Êõ»ùÔÚîêËá﮼¯³É¿ÉÖØ¹¹¹â×ÓÆ÷¼þ£¬ÀÖ³ÉÍ»ÆÆÁËÉÏÊö¾ÖÏÞ¡£

Æä½¹µãÉè¼Æ½ÓÄÉÌå¿éîêËáï®×÷Ϊ¸ÉÔ¤¸ÉÓëÑÚÄ££¬¾ßÓÐÏñËØ¼¶µç¿Ø¹âÆ×ÏàÓ¦ÄÜÁ¦£¬ÓÚÁ¬½á¸ß¹âѧ͸ÉäÂʵÄͬʱʵÏÖÁËÆ¤Ã×¼¶¹âÆ×µ÷ÖÆ¡£¸Ã¼¼Êõ¿ÉÓÚ400-1000ÄÉÃײ¨¶ÎʵÏÖ0.5°£¹âÆ×·Ö±çÂÊ£¨R=12,000£©¡¢2048¡Á2048¿Õ¼ä·Ö±çÂʺÍ73.2%×Ü͸ÉäÂÊ£¬²¢ÒÔ88ºÕ×ÈËÙ¶ÈÍê³ÉË²ÉØ¹âÆ×ÊÕÂÞ¡£¾­ÄêÒ¹Á¿ÊÔÑéÑéÖ¤£¬Ïà½ÏÔÚÇ°ÑØ¹âÆ×³ÉÏñ¼¼Êõ£¬RAFAELÓÚ×Ü͸ÉäÂÊÉϽúÉýÁ½±¶£¬¹âÆ×·Ö±çÂʸüÊÇʵÏÖ½üÁ½¸öÊýÄ¿¼¶µÄÍ»ÆÆ¡£

ÓÈÆäÖµ»¼ÉϹØ×¢µÄÊÇ£¬RAFAELÓÚµ¥´ÎÊÕÂÞÖбã¿É²¶×½°üÂÞËùÓÐÔ­×Ó½ÓÊÕ·åµÄÑǰ£¼¶¹âÆ×Êý¾Ý£¬Í¬²½»ñÈ¡¶à´ï5600¿ÅºãÐǵĹâÆ×ÐÅÏ¢£¬Ïà½ÏÊÀ½ç¶¥¼¶ÌìÎĹâÆ×Òǽ«²»ÑŲâЧÂʽúÉý100ÖÁ10,000±¶¡£ÕâÀà¸ßÐÔÄÜÇÒÒ×ÔÚ¼¯³ÉµÄË²ÉØ¹âÆ×ÕÉÁ¿ÒªÁ죬ÓÐÍûÍÆ¶¯´ÓÖÊÁÏ¿ÆÑ§µ½ÌìÌåÎïÀíµÈÁìÓòµÄÁè¼ÝʽÉú³¤¡£

¡ø Abstract£ºSpectroscopy is a pivotal tool for determining the physical structures and chemical compositions of materials and environments, and it is coÃÃÃÃonly used across diverse scientific fields. Conventionally, spectroscopic techniques rely on narrow slits or gratings, which impose a trade-off between spectral resolution and optical transmittance, thus precluding measurements with simultaneous high sensitivity and high efficiency. Here we introduce RAFAEL, a sub-?ngstr?ÃÃÃà ultra-high-transmittance snapshot spectroscopic technique, which targets this trade-off with integrated and reconfigurable photonics based on lithium niobate. Its design comprises bulk lithium niobate as an interference mask with a pixel-wise electrically tunable spectral response and delivers picometre-scale modulation with a high optical transmittance. Our approach achieves 88-Hz snapshot spectroscopy with a spectral resolution of approximately 0.5? at 400¨C1,000 nm (R = 12,000), spatial resolution of 2,048 ¡Á 2,048 and 73.2% total optical transmittance. Compared with state-of-the-art spectroscopic imagers RAFAEL offers double the total transmittance and a nearly two orders of magnitude improvement in spectral resolving power, as verified by extensive experiments. In particular, RAFAEL captured sub-?ngstr?m spectra, including all atomic absorption peaks, of up to 5,600 stars in a single snapshot, indicating ¡Á100¨C10,000 improvement in observational efficiency compared with world-class astronomical spectrometers. This high-performing yet easily integrated snapshot spectroscopic method could drive advances in fields ranging from material science to astrophysics.

º½¿ÕÉ豸Aviation equipment

Proximal cooperative aerial manipulation with vertically stacked drones

½ü¾àЭ×÷ʽ¿ÕÖвٿØÌåϵʵÏÖ´¹Ö±ÖصþÎÞÈË»ú×÷Òµ

¡ø ×÷ÕߣºHuazi Cao, Jiahao Shen, Yin Zhang, Zheng Fu, Cunjia Liu, Sihao Sun Shiyu Zhao

¡øÁ´½Ó£º

https://www.nature.com/articles/s41586-025-09575-x

¡øÔñÒª£ºÊµÏÖ¶àÐýÒíº½ÐлúеÈ˵Ĵ¹Ö±Öصþ½ü¾àЭ×÷£¬½«ÓÐÖúÔÚÂÄÐз±ÔÓ¿ÕÖвٿØÊ¹Ãü¡£È»¶øÒòΪº½ÐÐÆ÷¼äÁ¬Ðø´æÓÚµÄÇ¿ÁÒÏÂÏ´Á÷×ÌÈÅ£¬´¹Ö±Öصþ½ü¾àº½ÐÐͨ³£±»ÊÓΪÐèÒª¹æ±ÜµÄÉ˺¦¹¤¿ö¡£Ñо¿ÕßÌá×ÅÃûΪ¡°º½Ðй¤¾ßÏ䡱µÄЭ×÷¿ÕÖвٿØÌåϵ£¬¿ÉÓÚ´¹Ö±Öصþº½ÐÐǰÌáÏÂÒÔÑÇÀåÃ×¼¶¶ÔÓÚ½Ó¾«¶ÈÎȶ¨ÊÂÇé¡£

¸ÃÌåϵÓɹ¤¾ßÏä΢Ðͺ½ÐÐÆ÷Óë»úе±Û΢Ðͺ½ÐÐÆ÷×é³É¡£Óڸߴï13.18ms-1µÄÏÂÏ´ÆøÁ÷Çé¿öÖУ¬»úе±Ûº½ÐÐÆ÷µÄ»úеÈËÊÖ±ÛÄÜÓ빤¾ßÏ亽ÐÐÆ÷Я´øµÄ¹¤¾ßʵÏÖ×ÔÁ¢¶ÔÓÚ½Ó£¬¶ÔÓÚ½Ó¾«¶È´ï0.80¡À0.33ÀåÃס£¾­ÓÉÀú³ÌʵÏÖ½ü¾à¿ÕÖй¤¾ß½»Á÷£¬º½Ðй¤¾ßÏäÌåϵÀֳɻ¯½âº½Ðмä¸ôÓë²Ù¿Ø¾«¶ÈÖ®¼äµÄµÖêõ£¬Îª¶àÁìÓòÔËÓÃÖеÄÒì¹¹½»»¥Ê½º½ÐлúеÈËЭ×÷ÌṩÁËȫз¶Ê½¡£

¡ø Abstract£ºEnabling vertical-stack proximal cooperation between multirotor flying robots can facilitate the execution of complex aerial manipulation tasks. However, vertical-stack proximal flight is coÃÃÃÃonly regarded as a dangerous condition that should be avoided because of persistent and intense downwash interference generated between flying robots. Here we propose a cooperative aerial manipulation system, called FlyingToolbox, that can work stably with sub-centimetre-level docking accuracy under vertical-stack flight conditions. The system consists of a toolbox micro-aerial vehicle (MAV) and a manipulator MAV. The robotic arm of the manipulator MAV can autonomously dock with a tool carried by the toolbox MAV, in which the docking accuracy reaches 0.80 ¡À 0.33 cm in the presence of downwash airflow of up to 13.18 m s-1. By enabling midair tool exchange in proximity, FlyingToolbox resolves the paradox between flight proximity and manipulation accuracy, suggesting a new model for heterogeneous and interactive flying robot cooperation in diverse applications.

ÒÅ´«Ñ§Genetics

Cocaine chemogenetics blunts drug-seeking by synthetic physiology

¿É¿¨Òò»¯Ñ§ÒÅ´«Ñ§¾­ÓÉÀú³ÌºÏ³ÉÐÄÀíѧ»úÖÆ°´ÞàÒ©Îï×·Çó¾Ù¶¯

¡ø ×÷ÕߣºJuan L. Gomez, Christopher J. Magnus, Jordi Bonaventura, Oscar Solis, Fallon P. Curry, Marjorie R. Levinstein, Reece C. Budinich, Meghan L. Carlton, Emilya N. Ventriglia, Sherry Lam, Le Wang, Ingrid Schoenborn, William Dunne, Michael Michaelides Scott M. Sternson

¡øÁ´½Ó£º

https://www.nature.com/articles/s41586-025-09427-8

¡øÔñÒª£º»¯Ñ§·´À¡ÓÚÐÄÀíÀú³ÌÖÐÎÞ´¦²»ÓÚ£¬µ«Èç¹û²»ºÏ´íÎó»ù´¡¹¦Ð§ÔÐÓý·¢Éú×ÌÈÅ£¬ÔòÄÑÒÔ¾ÙÐÐÑо¿¡£³Éñ«ÐÔÒ©ÎTΪµäÐÍʵÀý£ºËüÃǾ­ÓÉÀú³Ì×÷ÓÃÔÚÄêÒ¹ÄÔÔöÇ¿¶à°Í°·ìºÆìµÆºÅ´«µ¼[1-3]£¬Òý·¢Ò©Îï×·ÇóÓëÉãÈ¡µÄÕý·´À¡Âֻء£È»¶ø£¬¾­ÓÉÀú³Ìת±ä»ù´¡¶à°Í°·Ë®Æ½À´¸ÉÔ¤¸ÉÓë¸ÉÓë´ËÀú³Ì£¬Ò²»á¶ÔÓÚ½øÐÞ¡¢Ô˶¯¡¢ÁôÒâÁ¦¼°ÐѾõÔÐÓý·¢Éú¸ºÃæÓ°Ïì¡£

ÊÜÐÄÀíµ÷¿ØÌåϵ¿ªµ¼£¬Ñо¿Õß¿ª·¢ÁËÒ»ÖÖ¸ßÑ¡ÔñÐԵĺϳÉÐÄÀíѧҪÁ죬¾­ÓÉÀú³ÌÓÚ¸ÃÉíÌ塪ÄêÒ¹ÄÔìºÆìµÆºÅ»·Â·ÖÐÖ²Èë¿É¿¨ÒòÒÀ¿¿µÄÄæÏòìºÆìµÆºÅÀú³Ì£¬À´¸ÉÔ¤¸ÉÓë¸ÉÓë³Éñ«µÄÕý·´À¡Âֻء£ÔÛÃÇʹÓÃÂѰ×Öʹ¤³Ì½¨ÉèÁ˶ÔÓÚ¿É¿¨Òò¾ß±¸Ñ¡ÔñÐÔÏàÓ¦µÄÃÅ¿ØÀë×ÓͨµÀ£¨Ïà½ÏÔÚÆäËûÒ©ÎïºÍÄÚÔ´ÐÔ·Ý×Ó£©¡£½«ÐË·ÜÐͿɿ¨ÒòÃÅ¿ØÍ¨µÀ±í´ïÔÚÄêÒ¹ÊóçÖºËÍâ²àÇø£¨Ò»¸öͨ³£±»¿É¿¨Òò°´ÞàµÄÄÔÇø£©£¬¿É°´Þà¿É¿¨Òò×ÔÎÒ¸øÒ©¾Ù¶¯£¬ÇÒ²»Ó°ÏìʳƷÇý¶¯Á¦¡£ÕâÒ»È˹¤¹¹½¨µÄ¿É¿¨Òò¼¤»î»¯Ñ§ÒÅ´«Àú³Ì£¬½µµÍÁ˿ɿ¨ÒòÒýÓյķü¸ôºËÇøÏ¸°ûÍâ¶à°Í°·Éý¸ß¡£

Ñо¿½á¹û×¢½â£¬¿É¿¨Òò»¯Ñ§ÒÅ´«Ñ§ÊÇÒ»ÖÖ¾­ÓÉÀú³Ì¿É¿¨Òò´æÓÚÊ±Ç¯ÖÆ¶à°Í°·¿ªÊÍÀ´Æ¥µÐÒ©ÎïÇ¿»¯µÄÑ¡ÔñÐÔÒªÁ졣δÀ´£¬»òÕß¿ÉÕë¶ÔÓÚÆäËû³Éñ«ÐÔÒ©Îï¡¢¼¤ËغʹúлÎ↑·¢»¯Ñ§ÒÅ´«Ñ§ÊÜÌ壬ÖúÁ¦½ÓÄɺϳÉÐÄÀíѧҪÁìÃþË÷ÆäÉñ¾­»·Â·»úÖÆ¡£ÒòΪÕâЩ»¯Ñ§ÒÅ´«Ñ§Àë×ÓͨµÀ¶ÔÓÚ¿É¿¨Òò¾ß±¸ÌØÒìÐÔ£¨²»ÏàÓ¦ÌìÈ»¿ä½±£©£¬ËüÃÇÒ²¿ÉÄÜΪ¿É¿¨Òò³Éñ«µÄ»ùÒòÒ½ÖÎ³âµØÐ·×Ó¡£

¡ø Abstract£ºChemical feedback is ubiquitous in physiology but is challenging to study without perturbing basal functions. One example is addictive drugs, which elicit a positive-feedback cycle of drug-seeking and ingestion by acting on the brain to increase dopamine signalling1,2,3. However, interfering with this process by altering basal dopamine also adversely affects learning, movement, attention and wakefulness. Here, inspired by physiological control systems, we developed a highly selective synthetic physiology approach to interfere with the positive-feedback cycle of addiction by installing a cocaine-dependent opposing signalling process into this body¨Cbrain signalling loop. We used protein engineering to create cocaine-gated ion channels that are selective for cocaine over other drugs and endogenous molecules. Expression of an excitatory cocaine-gated channel in the rat lateral habenula, a brain region that is normally inhibited by cocaine, suppressed cocaine self-administration without affecting food motivation. This artificial cocaine-activated chemogenetic process reduced the cocaine-induced extracellular dopamine rise in the nucleus accumbens. Our results show that cocaine chemogenetics is a selective approach for countering drug reinforcement by clamping dopamine release in the presence of cocaine. In the future, chemogenetic receptors could be developed for additional addictive drugs or hormones and metabolites, which would facilitate efforts to probe their neural circuit mechanisms using a synthetic physiology approach. As these chemogenetic ion channels are specific for cocaine over natural rewards, they may also offer a route towards gene therapies for cocaine addiction.

ÓÈÆäÉùÃ÷£º±¾ÎÄ×ªÔØ½ö½öÊdzöÔÚÁ÷´«ÐÅÏ¢µÄÐèÒª£¬Æäʵ²»ÏóÕ÷×Å´ú±í±¾ÍøÕ¾²»Ñŵã»òÕßÖ¤Ã÷ÆäÄÚÈݵÄÕæÊµÐÔ£»ÈçÆäËûýÌå¡¢ÍøÕ¾»òÕßСÎÒ˽¼Ò´Ó±¾ÍøÕ¾×ªÔØÀûÓã¬Ðë±£Áô±¾ÍøÕ¾×¢Ã÷µÄ¡°À´Àú¡±£¬²¢×Ô´ó°æÈ¨µÈÖ´·¨ÔðÈΣ»×÷ÕßÈç¹û²»¹âÔ¸±»×ªÔØ»òÕßÕß½ÓÇ¢×ªÔØ¸å·ÑµÈÊÂÒË£¬ÇëÓëÔÛÃÇÁªÏµ¡£-¿ìÓ¯VIII¹ÙÍø-