ÐÂÖÊÁÏϸ·ÖÁìÓòµÄÁì¾üÆóÒµ
ÖÐÎÄ¡¡£ü¡¡EN

¿ìÓ¯VIII¹ÙÍø-¡¶×ÔÈ»¡·£¨20251023³öÊ飩һÖÜÂÛÎĵ¼¶Á¡ªÐÂÎÅ¡ª¿ÆÑ§Íø

Ðû²¼Ê±¼ä£º2025-11-05 12:08:18
ä¯ÀÀ´ÎÊý£º´Î

Classical theories of gravity produce entanglement

¾­µäÒýÁ¦ÀíÂÛÔÐÓý·¢ÉúÁËÁ¿×Ó¾À²ø

¡ø×÷ÕߣºJoseph Aziz Richard Howl

¡ø Á´½Ó£ºhttps://www.nature.com/articles/s41586-025-09595-7

¡ø ÔñÒª£º

ÒýÁ¦¼°Á¿×ÓÁ¦Ñ§µÄͬһÈÔ¾ÉÊÇ¿ÆÑ§ÖÐ×îÉî¿ÌµÄ¿ª·ÅÐÔÎÊÌâÖ®Ò»¡£Ëæ×ÅÁ¿×Ó¼¼ÊõµÄ×îнøÕ¹£¬Àí²éµÂ ·ÑÂüÂÊÏÈÌá³öµÄÒ»¸öÊÔÑé¹¹ÏëÏÖÔÚ±»ÈÏΪÊdzõ´Î¼ìÑéÕâÀàͬһÀíÂ۵ĿÉÐз×Ó¡£

¸ÃÊÔÑé°üÂÞ½«Ò»¸öÄêÒ¹ÖÊÁ¿ÎïÌåÖÃÔÚÁ½¸öλÖõÄÁ¿×Óµþ¼Ó̬ÖУ¬²¢ÈÃÆäÓëÁíÍâÒ»¸öÖÊÁ¿Ìå·¢ÉúÏ໥×÷Óá£Èç¹ûÁ½¸öÎïÌåËæºó·¢ÉúÁ¿×Ó¾À²ø£¬Ôò±»ÈÏΪÊÇÒýÁ¦×ñÕÕÁ¿×ÓÁ¦Ñ§¶¨ÂɵľöÒéÐÔÖ¤¾Ý¡£ÕâÒ»½áÂÛÀ´ÀúÔÚһЩ½«¾­µäÒýÁ¦Ï໥×÷ÓÃÊÓΪֻÄÜ´«Êä¾­µäÐÅÏ¢¶ø·ÇÁ¿×ÓÐÅÏ¢µÄ¾Ö²¿Ï໥×÷Óõ͍Àí¡£

Ñо¿×齫ÕâЩ¶¨ÀíÖÐÀûÓõÄÎï×ÊÃèд·ûÀ©´óµ½Á¿×Ó³¡ÂÛµÄÍ걸¿ò¼Ü£¬·¢ÏÖ¾­µäÒýÁ¦ÀíÂÛ¿ÉÒÔ´«ÊäÁ¿×ÓÐÅÏ¢£¬´Ó¶ø¾­ÓÉÀú³ÌÎïÀí¶¨ÓòÀú³ÌÔÐÓý·¢ÉúÁ¿×Ó¾À²ø¡£¸ÃЧӦµÄ±ê¶ÈÂÉÓëÁ¿×ÓÒýÁ¦ÀíÂÛËùÍÆ²âµÄ²îÒ죬ÊÇÒÔËüÌṩÁË¿ÉÇ¿ÓÐÁ¦Ö¤ÊµÒýÆøÁ¦×ÓÐÔ×ÓµÄÊÔÑé²ÎÊý¼°ÇéÊÆÐÅÏ¢¡£

¡ø Abstract£º

The unification of gravity and quantum mechanics remains one of the most profound open questions in science. With recent advances in quantum technology, an experimental idea first proposed by Richard Feynman is now regarded as a promising route to testing this unification for the first time. The experiment involves placing a massive object in a quantum superposition of two locations and letting it gravitationally interact with another mass. If the two objects subsequently become entangled, this is considered unambiguous evidence that gravity obeys the laws of quantum mechanics. This conclusion derives from theorems that treat a classical gravitational interaction as a local interaction capable of transmitting only classical, not quantum, information. Here we extend the description of matter used in these theorems to the full framework of quantum field theory, finding that theories with classical gravity can then transmit quantum information and, thus, generate entanglement through physical, local processes. The effect scales differently to that predicted by theories of quantum gravity, and so it gives information on the parameters and form of the experiment required to robustly provide evidence for the quantum nature of gravity.

Deterministic soliton microcombs in Cu-free photonic integrated circuits

ÎÞÍ­¹â×Ó¼¯³Éµç·ÖмòÖ±¶¨ÐÔ¹Â×Ó΢Êá

¡ø×÷ÕߣºXinru Ji, Xurong Li, Zheru Qiu, Rui Ning Wang, Marta Divall, Andrey Gelash, et al.

¡ø Á´½Ó£ºhttps://www.nature.com/articles/s41586-025-09598-4

¡ø ÔñÒª£º

»ùÔÚ΢гÕñÆ÷µÄоƬ¼¶¹âѧƵÂÊÊᣨ΢Êᣩ¿ÉÒÔ»òÐíʵÏÖGHzµ½THzÖØ¸´ÆµÂÊ¡¢¿í´ø¿í¡¢½ô´ÕÐÎ×´Òò×Ó¼°Óë¾§Ô²¼¶ÖÆÔì¼æÈÝµÄ¹âÆµÊá¡£Si3N4¹â×Ó¼¯³Éµç·×÷Ϊһ¸öÁìÏÈµÄÆ½Ì¨£¬Æù½ñÒѾ­ÓÃÔÚÏÕЩËùÓÐÌåϵ¼¶ÑÝʾ£¬´Ó¹âͨѶ¡¢²¢Ðм¤¹âÀ×´ï¡¢¹âƵÂʺϳÉ¡¢µÍÔëÉù΢²¨ÔÐÓý·¢Éúµ½²¢Ðоí»ý´¦Öô¦·£¡£

È»¶ø£¬ÒòΪȷ¶¨ÐÔ¹Â×Ó΢ÊáµÄÌìÉú¾ß±¸ºÜÇ¿µÄÈȲ»Îȶ¨ÐÔ£¬¸Ã¼¼ÊõÏòÊÔÑéÊÒÍâÏÖʵÔËÓõÄת»¯½øÕ¹³Ù»º¡£ËäÈ»ÈËÃÇÒѾ­¾­¿ª·¢ÁËÖÖÖÖ¸÷ÑùµÄ¼¼ÊõÀ´Òý·¢¹Â×ÓÔÐÓý·¢Éú£¬°üÂÞÂö³å±ÃÆÖ¡¢¿ìËÙɨÃè¼°¸¨Öú¼¤¹â±ÃÆÖ£¬µ«ÕâЩ¼¼ÊõÆäʵ²»ÄÜÏûåôÈÈЧӦ£¬¶øÇÒÍùÍù»á¾­ÓÉÀú³ÌÔö³¤ÌرðµÄ·±ÔÓÐÔ»òÕßÏ÷¼õ¿É»ñµÃµÄ¹Â×Ó´æÓÚ¹æÄ£¶øÇÖº¦Î¢ÊáÐÔÄÜ¡£

Ñо¿×é½µ·þÁËÈÈЧӦ²¢Ö¤ÊµÁËSi3N4¹â×Ó¼¯³Éµç·ÖÐÈ·¶¨ÐÔ¹Â×ÓµÄÌìÉú¡£ËûÃÇÓÚ²¨µ¼ÖÐ×·×Ùµ½ÒâÏë²»µ½µÄÍ­ÔÓÖÊÈÈЧӦ£¬ÕâЩÔÓÖÊÀ´×ÔCMOS¼¶¹è¾§Æ¬ÖеIJÐÁôÎÛȾÎ²¢ÓÚÖÆÔìÀú³ÌÖнøÈëSi3N4¡£¾­ÓÉÀú³Ì¿ª·¢³ýÁËÍ­¼¼Êõ£¬ËûÃÇÄêÒ¹ÄêÒ¹½µµÍÁËͭŨ¶È£¬´Ó¶ø°´ÞàÁËÈÈЧӦ¡£

Ñо¿×é֤ʵÁËËÁÒ⼤¹âɨÃèÂÖÀª¼°ÂýËÙ¼¤¹âɨÃèϺÄÉ¢¿Ë¶û¹Â×Ó¼òÖ±¶¨ÐÔÌìÉú¡£¸Ã¼¼Êõ¿ÉÖ±²ßÓ¦ÓÃÔÚ´ú¹¤³§Si3N4Æ÷¼þµÄǰ¶ËÏß¹¤ÒÕ£¬Îª¹Â×Ó΢Êá¼¼ÊõµÄÏÖʵÔËÓÃɨ³ýÁËÒªº¦Õϰ­¡£

¡ø Abstract£º

Chip-scale optical frequency combs based on microresonators (microcombs) have provided access to optical combs with GHz-to-THz repetition rates, broad bandwidth, compact form factors and compatibility with wafer-scale manufacturing. Si3N4photonic integrated circuits emerged as a leading platform and have been used in nearly all system-level demonstrations so far, ranging from optical coÃÃÃÃunications, parallel lidar, optical frequency synthesis, low-noise microwave generation to parallel convolutional processing. Yet, transitioning to real-world deployment outside laboratories has been compounded by the difficulty of deterministic soliton microcomb generation, primarily due to strong thermal instabilities. Although a variety of techniques have been developed to initiate soliton generation, including pulsed pumping, fast scanning and auxiliary-laser pumping, these techniques do not eliminate thermal effects and often compromise microcomb performance, either by adding additional complexity or by reducing the accessible soliton existence range. Here we overcome thermal effects and demonstrate deterministic soliton generation in Si3N4photonic integrated circuits. We trace thermal effects to unexpected copper impurities within the waveguides, which originate from residual contaminants in CMOS-grade Si wafers and are gettered into Si3N4during fabrication. By developing copper removal techniques, we substantially reduce copper concentration and thereby mitigate thermal effects. We demonstrate successful dissipative Kerr soliton generation with arbitrary laser scanning profiles and slow laser scanning. Our techniques can be readily applied to front-end-of-line processing of Si3N4devices in foundries, removing a key obstacle to the deployment of soliton microcomb technology.

Optimization by decoded quantum interferometry

½âÂëÁ¿×Ó¸ÉÔ¤¸ÉÓ뷨ʵÏÖ¼ÓËÙÓÅ»¯

¡ø×÷ÕߣºStephen P. Jordan, Noah Shutty, Mary Wootters, Adam Zalcman, Alexander Schmidhuber, Robbie King, et al.

¡ø Á´½Ó£ºhttps://www.nature.com/articles/s41586-025-09527-5

¡ø ÔñÒª£º

ʵÏÖ³¬¶àÏîʽ¼ÓËÙÓÅ»¯Ò»Ö±ÊÇÁ¿×ÓËã·¨µÄ½¹µãÄ¿±ê¡£

Ñо¿×éÏÈÈÝÏàʶÂëÁ¿×Ó¸ÉÔ¤¸ÉÓë·¨£¨DQI£©£¬ÕâÊÇÒ»ÖÖʹÓÃÁ¿×Ó¸µÁ¢Ò¶±ä»»½«ÓÅ»¯ÎÊÌâ¼ò»¯Îª½âÂëÎÊÌâµÄÁ¿×ÓËã·¨¡£µ±ÓÚÓÐÏÞÓòÉÏÆÈ½ü×îÓŶàÏîʽÄâºÏÎÊÌâʱ£¬DQIÓëÒѾ­Öª¾­µäËã·¨Ïà±ÈʵÏÖÁ˳¬¶àÏîʽ¼ÓËÙ£¬ÕâÔ´ÔÚÎÊÌâµÄ´úÊý½á¹¹±»Ó³ÕÕÓڿɸßЧÇó½âµÄ½âÂëÎÊÌâÖС£

È»ºó£¬Ñо¿×é·ÖÎöÁ˸ÃÒªÁìÊÇ·ñ¿ÉÒÔ¼ÓËÙȱÉÙ´úÊý½á¹¹µ«¾ß±¸Ï¡ÉÙ×Ó¾äµÄÓÅ»¯ÎÊÌâ¡£ÕâЩÎÊÌâ±»¼ò»¯Îª½âÂëµÍÃÜ¶ÈµÄÆæÅ¼Ð£ÑéÂ룬ÒѾ­ÖªÆä¾ß±¸Ç¿Ê¢µÄ½âÂëÆ÷¡£ÎªÁËÑéÖ¤ÕâÒ»µã£¬Ñо¿×é¹¹½¨ÁËÒ»¸ö×îÄêÒ¹XORSATʵÀý£¬DQI±ÈͨÓõľ­µä¿ªµ¼Ê½Ëã·¨£¨ÈçÄ£·ÂÍ˻𣩸ü¿ìÕÒµ½ÀàËÆ×îÓŽâ¡£

Ö»¹Ü¶¨ÖƵľ­µäÇó½âÆ÷ÓÚÕâÀàÇé¿öÏ»òÕßÓÅÔÚDQI£¬µ«¸ÃÑо¿½á¹û×¢½â£¬½«Á¿×Ó¸µÁ¢Ò¶±ä»»Óëǿʢ½âÂëÔ­ÓïÏàÁªºÏ£¬Îª¹¥¿Ë·±ÔÓÓÅ»¯ÎÊÌâµÄÁ¿×Ó¼ÓËÙÌṩÁËÒ»ÌõÓÐÔ¶¾°µÄз×Ó¡£

¡ø Abstract£º

Achieving superpolynomial speed-ups for optimization has long been a central goal for quantum algorithms. Here we introduce decoded quantum interferometry (DQI), a quantum algorithm that uses the quantum Fourier transform to reduce optimization problems to decoding problems. When approximating optimal polynomial fits over finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. The speed-up arises because the algebraic structure of the problem is reflected in the decoding problem, which can be solved efficiently. We then investigate whether this approach can achieve a speed-up for optimization problems that lack an algebraic structure but have sparse clauses. These problems reduce to decoding low-density parity-check codes, for which powerful decoders are known. To test this, we construct a max-XORSAT instance for which DQI finds an approximate optimum substantially faster than general-purpose classical heuristics, such as simulated annealing. Although a tailored classical solver can outperform DQI on this instance, our results establish that combining quantum Fourier transforms with powerful decoding primitives provides a promising new path towards quantum speed-ups for hard optimization problems.

Observation of constructive interference at the edge of quantum ergodicity

Á¿×Ó±éÀúÐÔÁÙ½çÓò²»ÑŲ⵽Ï೤¸ÉÔ¤¸ÉÓë

¡ø×÷ÕߣºGoogle Quantum AI and Collaborators

¡ø Á´½Ó£ºhttps://www.nature.com/articles/s41586-025-09526-6

¡ø ÔñÒª£º

Á¿×Ó¶àϵͳͳµÄ¶¯Á¦Ñ§ÌØÐÔÓÉʱ¿ÕÊèÉ¢µãµÄÁªÏµ¹ØÏµº¯ÊýÖØ¹¹¶øÀ´µÄÁ¿×Ó²»ÑŲâÖµÀ´±íÕ÷¡£È»¶ø£¬Óھ߱¸¿ìËÙ¾À²øÔÐÓý·¢ÉúµÄ¶¯Á¦Ñ§ÖУ¬ÒòΪÐÅÏ¢¼ÓÈŵÄÓ°Ï죬Á¿×Ó²»ÑŲâֵͨ³£Óںܳ¤Ò»¶Îʱ¼äºó¶ÔÓڵײ㶯Á¦Ñ§Ï¸½ÚµôÃô¡£ÎªÁËÍ»ÆÆ¸ÃÏÞ¶¨£¬²¢¿ÉÒÔ»òÐí»ñÈ¡ÊÔÑéÌåϵÖеÄÏà¸É¶¯Á¦Ñ§ÐÅÏ¢£¬ÈËÃÇÒѾ­ÀÖ³ÉʵÏÖÁËÖØ¸´Ê±¼ä·´ÑÝ·½°¸¡£

Ñо¿×éÊÔÑéÐÔµØÕÉÁ¿Á˳¬µ¼Á¿×Ó´¦Öô¦·£Æ÷ÉϵĶþ½×³¬Ê±ÐòÁªÏµ¹ØÏµº¯Êý£¨OTOC(2)£©£¬²¢·¢ÏÖÆäÓÚÓÀ½Ù¼ä³ß¶ÈÉ϶ÔÓڵײ㶯Á¦Ñ§ÈÔÁ¬½áÃô¸Ð¡£´ËÍ⣬OTOC(2)Óڸ߶ȾÀ²øµÄÁ¿×Ó¶àϵͳͳÖÐÌåÏÖ³öÁ¿×ÓÁªÏµ¹ØÏµÐÔ£¬ÈôÎÞʱ¼ä·´Ñݼ¼ÊõÔòû·¨»ñÈ¡¡£¾­ÓÉÀú³ÌÓÚÁ¿×ÓÑÝ»¯Àú³ÌÖвåÈëÅÝÀûËã×Ó£¬½ø¶øÏàÎ»Ëæ»ú»¯º£É­±¤Í¼¾°ÖÐÅÝÀû×Ö·û´®µÄÊÔÑé·½°¸Ö¤ÊµÁËÕâÒ»µã¡£

OTOC(2)µÄÕÉÁ¿ÖµÓڸ÷½°¸×÷ÓÃÏ·¢ÉúÁ˱¾É«ÐԵı仯£¬´Ó¶øÕ¹ÏÖÁËÓÚ¹¹ÐͿռäÖÐÐγÉΪÁËÄêÒ¹»·Â·µÄÅÝÀû×Ö·û´®Ö®¼äµÄÏ೤¸ÉÔ¤¸ÉÓë¡£²»ÑŲ⵽µÄ¸ÉÔ¤¸ÉÓë»úÖÆÒ²¸¶ÓëÁËOTOC(2)¸ß¶ÈµÄ¾­µä·ÂÕæ·±ÔÓÐÔ¡£ÕâЩ½á¹û£¬ÁªºÏOTOC(2)ÓÚ½âÎöÁ¿×Ó¶¯Á¦Ñ§ÓÐЧϸ½Ú·½ÃæµÄÄÜÁ¦£¨Èç¾­ÓÉÀú³Ì¹þÃܶٽøÐÞµÄÀý×ÓËùʾ£©£¬×¢½âÁËʵʵ¼Ê¼ÊÁ¿×ÓÉÏ·çµÄ¿ÉÐз×Ó¡£

¡ø Abstract£º¿ìÓ¯VIII¹ÙÍø-

The dynamics of quantum many-body systems is characterized by quantum observables that are reconstructed from correlation functions at separate points in space and time. In dynamics with fast entanglement generation, however, quantum observables generally become insensitive to the details of the underlying dynamics at long times due to the effects of scrambling. To circumvent this limitation and enable access to relevant dynamics in experimental systems, repeated time-reversal protocols have been successfully implemented. Here we experimentally measure the second-order out-of-time-order correlators (OTOC(2)) on a superconducting quantum processor and find that they remain sensitive to the underlying dynamics at long timescales. Furthermore, OTOC(2)manifests quantum correlations in a highly entangled quantum many-body system that are inaccessible without time-reversal techniques. This is demonstrated through an experimental protocol that randomizes the phases of Pauli strings in the Heisenberg picture by inserting Pauli operators during quantum evolution. The measured values of OTOC(2)are substantially changed by the protocol, thereby revealing constructive interference between Pauli strings that form large loops in the configuration space. The observed interference mechanism also endows OTOC(2)with high degrees of classical simulation complexity. These results, combined with the capability of OTOC(2)in unravelling useful details of quantum dynamics, as shown through an example of Hamiltonian learning, indicate a viable path to practical quantum advantage.

Cryogenic X-ray photoelectron spectroscopy for battery interfaces

µç³Ø½çÃæµÄµÍÎÂXÉäÏß¹âµç×ÓÄÜÆ×

¡ø×÷ÕߣºSanzeeda Baig Shuchi, Giulio D¡¯Acunto, Philaphon Sayavong, Solomon T. Oyakhire, Kenzie M. Sanroman Gutierrez, Juliet Risner-Jamtgaard, et al.

¡ø Á´½Ó£ºhttps://www.nature.com/articles/s41586-025-09618-3

¡ø ÔñÒª£º

Ïàʶԭʼ½çÃæµÄ»¯Ñ§Çé¿öÊǵ绯ѧ¡¢ÖÊÁÏ¿ÆÑ§¼°Íâò¿ÆÑ§³Ö¾ÃѰÇóµÄÄ¿±ê¡£¶ÔÓÚï®Ñô¼«ÖеĹÌÌåµç½âÖʽçÃæ£¨SEI£©µÄ±¾É«ÐÔÏàʶԴÔÚXÉäÏß¹âµç×ÓÄܯף¨XPS£©·ÖÎö¡£È»¶ø£¬ÊÒΣ¨RT£©ÁªºÏ³¬¸ßÕæ¿Õ£¨UHV£©¿ÉÒýÓÕXPSÀú³ÌÖз´Ó³¼°»Ó·¢£¬Ôì³ÉSEI·¢ÉúÏÔÖøÍɱä¡£ÊÇÒÔ£¬Ø½ÐèÒ»ÖÖ¿ÉÎȶ¨SEIµÄ±íÕ÷¼¼Êõ¡£

Ñо¿×鿪·¢Á˾߱¸¿ìËÙÉî¶ÈÀä¶³µÄµÍΣ¨Àä¶³£©-XPS£¬²¢ÑÝʾÁËSEIµÄԭλÉú´æ¡£ËûÃÇ·¢ÏÖÁËUHVÖб¾É«ÉϲîÒìµÄSEI×é·Ö¼°¸üºñµÄԭʼSEI£¬ÇÒûÓÐRTÏà¸ÉµÄºñ¶ÈÏ÷¼õ¼°Ö÷Òª×é·Ö£¨°üÂÞLiF¼°Li2O£©µÄת±ä¡£

ÕâÀà¶ÔÓÚԭʼSEIÉí·ÖµÄ×îзÖÎöʵÏÖÁ˲îÒìµç½âÖÊ»¯Ñ§Ö®¼äµÄÐÔÄÜÁªÏµ¹ØÏµ¡£µ«×îÖ÷ÒªµÄÊÇ£¬Ñо¿×é¿ä´óÁËÓÚµÍÎÂǰÌáÏÂÑо¿Ãô¸Ð½çÃæµÄÐëÒªÐÔ¡£

¡ø Abstract£º

Understanding the chemical environment of pristine interfaces is a long-sought goal in electrochemistry, materials science and surface science. A substantial understanding of one such interface, the solid electrolyte interphase (SEI) in lithium anodes, originates from X-ray photoelectron spectroscopy (XPS). However, room temperature (RT) combined with ultrahigh vacuum (UHV) can induce major SEI evolution from reactions and volatilization during XPS. Thus, a technique is necessary for SEI stabilization. Here we develop cryogenic (cryo)-XPS with iÃÃÃÃediate plunge freezing and demonstrate SEI preservation. We discover substantially different SEI speciation and a thicker pristine SEI with cryo-XPS, free from RT-associated thickness reduction and alterations to important species, including LiF and Li2O, in UHV. This new access to pristine SEI composition enables performance correlations across diverse electrolyte chemistries. Primarily, we highlight the necessity of studying sensitive interfaces under cryogenic conditions.

-¿ìÓ¯VIII¹ÙÍø-